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Aim : to understand the sensibility to heterogeneously distributed
resources and the interplay between spatial dynamics and
evolutionary changes.

Figure: Finches from Galapagos Archipelago



Model description

For any time t ≥ 0, the individual i is characterized by:

• its phenotypic trait, U i
t ∈ U , compact subset of Rq,

• its location, X i
t , that belongs to X , open, bounded and

convex subset of Rd .

Definition

The total population is represented at any time t by the finite
measure:

νKt =
1

K

Nt∑
i=1

δ(X i
t ,U

i
t)

where

• Nt is the number of individuals at time t,

• K is a scaling parameter.



Migration

Any individual with phenotypic trait u moves according to a
diffusion driven by the following stochastic differential equation
normally reflected at the boundary of X :

dXt =
√

2muId · dBt − n(Xt)dlt

where

• l is an adapted continuous, non-decreasing process with l0 = 0,

• B is a d dimensional brownian motion.



Birth and death dynamics

An individual with location x ∈ X and trait u ∈ U :

• gives birth to a new individual at rate

bu(x) ,

• with probability 1− qK · p , the offspring is a clone,

• with probability qK · p , the offspring is a mutant.

• dies because of natural death at rate

du(x) .

• dies because of competition at rate

1

K

Nt∑
i=1

cu,u
i
(x i ) .



Assumptions

Two scalings :

• Large population asymptotic: K → +∞ .

• Rare mutations asymptotic: qK → 0 .



First asymptotic

Assume that
νK0 ⇒

K→+∞
ξ0 with ξ0(dx , dw) = ξu0 (dx)δu(dw) + ξv0 (dx)δv (dw),

Theorem (Champagnat, Méléard (2007))

(νKt )t∈[0,T ] ⇒
K→+∞

(ξt)t∈[0,T ]

such that

ξt(dx , dw) = ξut (dx)δu(dw) + ξvt (dx)δv (dw),

and ξ is the weak solution to :

∂tξt = mw∆xξt +

(
bw (x)−dw (x)−

∫
X×U

cww
′
(y)ξt(dy , dw

′)

)
ξt ,

(1)
with Neumann boundary condition.



Long time behavior of Equation (1)

Theorem (L.,Mirrahimi,Méléard)

For any initial condition in L2(X ), the solution to (1) converges in
L∞(X ) towards a stationary state,

and we can explicit two parameters :

• fv→u : invasion fitness of an individual v in a u-population

• fu→v : invasion fitness of an individual u in a v -population

which describe the stability of the stationary states :

1) the null state (0, 0) : unstable,

2) the monomorphic state (ξ̄u, 0) : stable iff fv→u < 0,

3) the monomorphic state (0, ξ̄v ) : stable iff fu→v < 0,

4) and a state with coexistence which exists and is stable iff
fv→u > 0 and fu→v > 0.
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Exit time of a neighborhood of the equilibrium

The initial population is dimorphic such that

νK ,u0 ≈ ξ̄u et νK ,v0 =
δx0

K
.

Question:

How long does the stochastic process stay close to the
equilibrium ξ̄u?

We use the Wasserstein distance between two measures :

W(ν, µ) = sup
f ∈Lip,‖f ‖Lip≤1

∣∣∣∣∫ fdν −
∫

fdµ

∣∣∣∣ .



Exit time of a neighborhood of the equilibrium

There exist γ′, ε, V > 0 such that:

if W(νK ,u0 , ξ̄u) < γ′ and νK ,v0 ∈ BW(0, ε)

Theorem

PνK0

(
TK ,u
γ︸ ︷︷ ︸

first time
such that

W(νK ,u
t ,ξ̄u)>γ

> eKV ∧ TK ,v
ε︸ ︷︷ ︸

first time
such that

νK ,v
t ∈BW (0,ε)

∧ S1︸︷︷︸
first

mutation
time

)
−→

K→+∞
1.



Invasion time of a mutant

When a mutant with trait v appears, the mutant population can
be approximated by a branching diffusion :

• move according to a diffusion with coefficient mv ,

• birth rate bv (x),

• death rate dv (x) +
∫
X cv ,u(y)ξ̄u(dy),

• the first mutant appears at the location x0 ∈ X .

Questions:

. What characterizes the survival probability of the diffusion
process?

. How long does it take for its size to be non-negligible
compared to a parameter K which tends to +∞?



Invasion time of a mutant

Let T0 be the extinction time,
let TKε be the first time when the population reaches the size Kε.

Theorem

Px0(TKε < T0) −→
K→+∞

φ(x0)

Px0(TKε < tK ) −→
K→+∞

φ(x0), with tK � log(K ),

where

. 1st case (fv→u < 0): φ ≡ 0,

. 2nd case (fv→u > 0): φ is the unique positive solution to the
following elliptic equation with Neumann boundary condition
0 = mv∆xφ+ (bv − dv −

∫
X cvu ξ̄u)φ− bvφ2.



Convergence to a spatially structured TSS

Assumptions :

• Large population asymptotic: K → +∞ .

• Rare mutations asymptotic: qK → 0 .

The mathematical link between K and qK :

log(K )� 1

KqK
� eKV , for any V > 0.

• ”Invasion-Implies-Fixation”: two different traits cannot
coexist for a long time scale.

Aim : change the time scale t 7→ t
KqK

.
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Simulations



Convergence to a spatially structured TSS

Theorem

(νKt/KqK )t∈[0,T ] −→
t→+∞

(Λt)t∈[0,T ]

(in the sense of the finite dimensional distributions)

(Λt)t≥0 is a jump process on {ξ̄wδw ,w ∈ U} ⊂ MF (X × U),
it jumps from the state u to the state v with infinitesimal rate∫

X
pu(x)bu(x) φuv (x)︸ ︷︷ ︸

Invasion probability

θ(x , u, v)︸ ︷︷ ︸
mutation kernel

ξ̄u(dx)dv
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JAJ. Metz, S. Geritz, G. Meszéna, F. Jacobs, JS. Van Heerwaarden,

Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction,
Stochastic and spatial structures of dynamical systems, 45 (1996),183–231.

H. Leman,

Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution
sequence,
arXiv preprint arXiv:1509.02022, (2015).

Thank you.


	Model
	Dimorphic population study
	Population of small size
	Spatially structured Trait Substitution Sequence model

