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Aim : to understand the sensibility to heterogeneously distributed
resources and the interplay between spatial dynamics and
evolutionary changes.

1, Geospiza magnirostris 2. Geospiza Fortis
3. Geozpiza parvuls + Certhidea olivacea

Figure: Finches from Galapagos Archipelago



Model description

For any time t > 0, the individual i is characterized by:
e its phenotypic trait, U! € U, compact subset of RY,

e its location, Xti, that belongs to X, open, bounded and
convex subset of RY.

Definition
The total population is represented at any time t by the finite
measure:
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where

e N; is the number of individuals at time ¢,

e K is a scaling parameter.




Migration

Any individual with phenotypic trait u moves according to a
diffusion driven by the following stochastic differential equation
normally reflected at the boundary of X

dXt =V 2mYld - dBt — n(Xt)dlt

where
e | is an adapted continuous, non-decreasing process with lp = 0,

e B is a d dimensional brownian motion.



Birth and death dynamics

An individual with location x € X and trait v € U:

e gives birth to a new individual at rate
b(x) |,
e with probability |1 — gk - p|, the offspring is a clone,

o with probability [ gk - p|, the offspring is a mutant.

e dies because of natural death at rate

d“(x)]

e dies because of competition at rate
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Assumptions

Two scalings :

e Large population asymptotic: .

e Rare mutations asymptotic: .



First asymptotic

ssume that

K
v = 0
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with &o(dx, dw) = &5 (dx)d,(dw) + &5 (dx)d, (dw),

Theorem (Champagnat, Méléard (2007))

such that

(VtK)te[o,T] Kj—oo (ft)te[o,T]

&t(dx, dw) = &' (dx)d,(dw) + &/ (dx)d, (dw),

and & is the weak solution to :
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with Neumann boundary condition.




Long time behavior of Equation (1)

Theorem (L.,Mirrahimi,Méléard)

For any initial condition in L?>(X), the solution to (1) converges in
L>°(X) towards a stationary state,




Long time behavior of Equation (1)

Theorem (L.,Mirrahimi,Méléard)

For any initial condition in L?>(X), the solution to (1) converges in
L>°(X) towards a stationary state,

and we can explicit two parameters :
° : invasion fitness of an individual v in a u-population

e | fy_, [ invasion fitness of an individual u in a v-population

which describe the stability of the stationary states :

1) the null state (0,0) : unstable,
) the monomorphic state (£¥,0) : stable iff f,_,, < 0,
3) the monomorphic state (0,£¥) : stable iff f,,, <0,
)

and a state with coexistence which exists and is stable iff
fu—uy >0and f,_,, > 0.



Exit time of a neighborhood of the equilibrium

The initial population is dimorphic such that

Kv_5x0

Question:

How long does the stochastic process stay close to the
equilibrium &47

We use the Wasserstein distance between two measures :

/fdu—/fdu’.

W(v,u) = sup
FeLip,|Fllp<1




Exit time of a neighborhood of the equilibrium

There exist v/, €, V > 0 such that:

if W(re ", E4) <+ and 10" € By (0, )
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Invasion time of a mutant

When a mutant with trait v appears, the mutant population can
be approximated by a branching diffusion :

e move according to a diffusion with coefficient m",
e birth rate b¥(x),

o death rate d“(x) + [, ¢"¥(y)&“(dy),

e the first mutant appears at the location xg € X.

Questions:

> What characterizes the survival probability of the diffusion
process?

> How long does it take for its size to be non-negligible
compared to a parameter K which tends to 4007



Invasion time of a mutant

Let To be the extinction time,
let Tke be the first time when the population reaches the size Ke.

Theorem

]P)XO(TKE < TO) K—>_+>oo ¢(X0)

PXQ(TKE < t'K) Kjoo ¢(X0), with tx > Iog(K),

where
> 1% case (f,, <0): ¢ =0,
> 2™ case (f,_,, > 0): ¢ is the unique positive solution to the

following elliptic equation with Neumann boundary condition
0= vaX¢+ (bv —dv— fX Cvugu)qs _ bv¢2'




Convergence to a spatially structured TSS

Assumptions :

o asymptotic: .
° asymptotic: .

The mathematical link between K and gk:

, forany V > 0.

° . two different traits cannot
coexist for a long time scale.



Convergence to a spatially structured TSS

Assumptions :

o asymptotic: .
° asymptotic: .

The mathematical link between K and gk:

, forany V > 0.

° . two different traits cannot
coexist for a long time scale.

Aim : change the time scale t — Rar
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Convergence to a spatially structured TSS

Theorem

(VquK)te[O,T] tjw (At)te[07 7]

(in the sense of the finite dimensional distributions)

(At)t>0 is a jump process on {£%6,,w € U} C Mp(X x U),
it jumps from the state v to the state v with infinitesimal rate
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Invasion probability mutation kernel
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